Некоторые особенности расчета на прочность ракеты-носителя

     Ракета-носитель "Энергия" - конструкция пакетной схемы. Связь между блоками осуществляется в двух поясах. Верхний пояс связей, выполненный в виде сферических шарниров, воспринимает три линейных силовых фактора. В нижнем поясе связей боковые блоки попарно связаны между собой и каждая пара блоков крепится к центральному блоку - здесь воспринимаются лишь силы, действующие в плоскости пояса связей, обеспечивая свободные перемещения блоков в направлении его продольной оси. При этом схема крепления боковых блоков в параблоки, а затем параблоков к центральному блоку обеспечивает статическую определимость нижнего пояса связей.
     Принятая схема силовых связей обеспечивает и статическую определимость в целом, в смысле определения усилий взаимодействия блоков в узлах связей ракеты в полете. Это приводит к тому, что в полете, в случаях воздействия на ракету неравномерного поля температур, могут появляться лишь локальные участки, на которых возникают температурные напряжения. В целом же, внешних дополнительных температурных нагрузок на блоки либо усилий в межблочных связях не возникает.
     При наземной эксплуатации осуществляется жесткое закрепление всех четырех блоков к наземному блоку Я. Крепление каждого из блоков производится восемью шпильками и восемью замками, обеспечивающими восприятие перерезывающих и продольных усилий и изгибающих моментов.
     Таким образом, по этому стыку осуществляется практически полная заделка, что накладывает на ракету дополнительные связи и делает ее статически неопределимой. Во всех случаях эксплуатации ракеты совместно с наземным блоком Я воздействие температурных полей приводит к появлению дополнительных температурных нагрузок, основные причины возникновения которых рассмотрены ниже.
     В условиях "Байконура" ракета собирается в пакет при температуре окружающей среды +20 °С. По окончании сборки она попадает в условия, когда температура может составлять от +50 до +40 °С. При этом на общее равномерное изменение температуры конструкции ракеты накладывается влияние ряда факторов, вызывающих существенную неравномерность в распределении температурных полей.
     К ним относятся следующие: охлаждение или нагрев отдельных элементов при заправке или термостатировании, неравномерность заправки компонентами боковых блоков, воздействие Солнца и ветра. Многообразие этих факторов приводит к различным схемам возникновения температурных нагрузок в межблочных связях и блоках. Так, например, при равномерном изменении температуры конструкции, включая и блок Я, за счет различных коэффициентов линейного расширения возникает разница температурных перемещений центров боковых блоков в двух сечениях, в сечении нижнего пояса связи и в сечении по стыку с блоком Я. При этом хвостовая часть боковых блоков испытывает изгиб и сдвиг, вызванные относительным смещением указанных сечений.
     Рассогласование уровней заправки боковых блоков или воздействие Солнца приводит к разнице осевых температурных перемещений вершин боковых блоков. Это вызывает поворот сечения верхнего пояса связи и, как следствие, изгиб центрального блока и всего пакета.
     Величины температурных нагрузок существенным образом зависят от жесткостных характеристик элементов поясов связей блоков. Оценки, проведенные для ряда простейших случаев с учетом упрощенного представления жесткостных характеристик поясов связей, показали, что величины дополнительных температурных нагрузок в опорных отсеках боковых блоков могут достигать 30-40 % от максимальных нагрузок на эти отсеки.
     Таким образом, при создании "Энергии" возникла необходимость решения новой задачи - определения нагрузок в межблочных связях и напряженно-деформированного состояния конструкции при наземной эксплуатации от действия температурных факторов. Ее решение потребовало разработки новой методики расчета жесткостных характеристик поясов связей и оценки температурных усилий, а также новой методики экспериментального подтверждения полученных расчетных величин.
     Сложная схема и практически произвольное распределение температур по конструкции ракеты "Энергия" приводят к невозможности использования аналитических методов при решении задачи определения напряженно-деформированного состояния конструкции. Применение численных методов при решении указанной задачи с использованием оболочечной расчетной модели также не дает возможности получения решения с приемлемыми для проведения анализа затратами. Решение подобной задачи, даже с использованием суперэлементного подхода, представляется весьма сложной проблемой. Тем более сложным является использование такой модели для многочисленных расчетов с целью анализа влияния различных конструктивных элементов.
     В то же время задачи определения нагрузок для ракеты-носителя многоблочного типа решаются, как правило, в балочной постановке с использованием метода начальных параметров и метода конечных элементов.
     Получаемые при этом результаты хорошо согласуются с экспериментальными данными. Учитывая, что отдельные блоки ракеты-носителя ракетной схемы "Энергии" представляют собой оболочечные конструкции большого удлинения, практически аналогичные многоблочным ракетам-носителям, существует возможность решения задач, связанных с расчетом всего пакета на основе балочных представлений. Именно поэтому балочный подход нашел применение при разработке динамических схем.
     В основу экспериментального исследования температурного нагружения положено то, что конкретные температурные режимы конструкции могут быть представлены как комбинации "единичных" расчетных случаев, а температурные нагрузки, соответствующие данному температурному режиму, могут быть получены суммированием температурных нагрузок от единичных случаев. На основе подобного подхода разработана методика оперативной оценки температурных нагрузок, в соответствии с которой была реализована специальная система измерений на стендовом варианте ракеты - 5С.
     Длительный срок эксплуатации этой ракеты обеспечил возможность проведения многократных замеров, а большая программа работ - возможность получения значительных перепадов температур.
     При создании системы измерений были проведены специальные мероприятия для повышения точности и стабильности результатов на всем периоде эксплуатации. Полученные результаты подтвердили правильность решений и подходов, принятых при расчетах температурных нагрузок, и создания системы измерений.
     Введение данной системы измерений в сочетании с разработанной методикой оперативной оценки температурных нагрузок позволило обеспечить контроль за уровнем нагружения межблочных связей и опорных отсеков боковых блоков на наиболее опасных (с точки зрения температурного нагружения) этапах наземной эксплуатации.


Далее...