И опять же надежность двигателей

     По результатам анализа статистических данных аварийных пусков ракет с жидкостными двигателями установлено, что число отказов, приходящихся на двигательные установки, доходит до 41 % от общего количества аварий. Это естественно, понимая, что двигательная установка в ракетном техническом комплексе - это мощная энергетическая система, функционирование которой связано с реализацией сложных физических процессов. Это мощный огневой поток и высоконагруженные гидромеханические агрегаты.
     Стремление достичь высокого уровня надежности двигателей диктуется необходимостью обеспечения должной степени безопасности системы в пилотируемом варианте и достижения минимального ущерба, связанного с потерями при возможных аварийных исходах пусков в беспилотном варианте.
     Размер ущерба для таких систем, как ракета-носитель "Энергия", может быть ощутимо велик из-за большой стоимости ракеты и, в том числе, большой стоимости двигателей.
     Особенностью двигательных установок тяжелых ракет-носителей из-за большой суммарной тяги маршевых двигателей, измеряемой несколькими тысячами тонн, является их многоблочность. Существует некоторое оптимальное количество двигателей в связке, которое определяется, с одной стороны, возможностью современной технологии создания высоконадежного двигателя большой размерности, а с другой - понижением надежности связки двигателей малой размерности с ростом их числа в составе пакета.
     Известно, что применение в технической системе элементов более одного ведет к снижению общей надежности. Применяемые в ракетных системах связки однородных двигателей или их любые композиции, естественно, имеют надежность тем выше, чем меньше двигателей в связке, чем выше надежность единичного двигателя, чем больше степень резервирования и дублирования. Поэтому первоочередной задачей при создании носителей с многодвигательными установками является обеспечение высокой надежности. В настоящее время применительно к техническим проблемам эта задача решается, в частности, за счет широкого использования методов системного и регрессивного анализа, а также методов вероятностной механики разрушения машин на всех этапах создания подобных систем, то есть на этапах проектирования, конструкторской отработки, серийного производства и эксплуатации.
     Процесс доведения двигателей РД-170 и РД-0120 на этапе проектирования, экспериментальной отработки до соответствующего уровня и его последовательного достижения организовывался по каждому двигателю соответствующими комплексными планами обеспечения надежности. При этом разработчики ракеты-носителя и двигателя исходили из поиска оптимального соотношения роста надежности и затрат на разработку и доводку.
     Если при ориентации на достижение должного уровня надежности двигателя исходить из условия затрат средств на его создание, то подобный подход можно представить некоторым соотношением, выражающим зависимость - чем выше надежность двигателя, тем меньше ожидаемые потери из-за отказов двигателей в полете при эксплуатации ракетного комплекса. Однако увеличение надежности двигателя достигается за счет увеличения объема и времени его отработки, а следовательно, за счет увеличения стоимости этой отработки. Естественно, зависимость суммарных затрат имеет минимум и оптимальное значение надежности двигателя, определяемое из соотношения экономических ограничений и величины ожидаемых потерь при низкой надежности.
     Для больших ракетных комплексов, из-за их высокой стоимости, это оптимальное значение получается таким, что для его достижения требуются нереальные затраты средств и времени отработки. Поэтому в техническом задании на двигатель принимается значение надежности двигателя с учетом реально допустимых финансовых и временных затрат на его достижение. При этом учитывается, что даже незначительное снижение надежности двигателя позволяет очень существенно сократить материальные затраты на его доводочные испытания.
     Анализ затрат на создание такого сложного комплекса показал, что надежность и безопасность системы связаны экспоненциальной зависимостью с затратами, прогрессирующими в области высоких значений надежности. Пути обеспечения надежности были показаны выше и сводятся к введению в систему избыточности и резервирования, введению функциональных систем, снижающих возможный ущерб. Основу же составляет обеспечение высокого качества технологии всей цепочки элементов как базы надежности.
     Минимум общей стоимости достигается не при максимальных значениях надежности системы, а при некотором уровне в районе значений надежности 0,995.
     Следует обратить внимание, что довлеющее интуитивное стремление повышения надежности, особенно для пилотируемых комплексов, неизбежно. В этой связи разработчики попадают в область резкого повышения затрат даже при малой величине приращения надежности. Этим объясняется отличие этого интегрированного комплекса, объединяющего транспортную и пилотируемую системы, от комплексов раздельного типа. С этим связана высокая стоимость разработки наряду со сложностью системы. В то же время надежность ракет одноразового использования, например "Циклона", "Союза", "Протона", находится на достаточно высоком уровне и стоимость их разработки, в том числе и различных модификаций, ощутимо ниже. В результате сравнения этих затрат возникают неоднозначности суждений о преимуществе современных ракет-носителей новой разработки. Существует тенденция сохранения старых ракетных комплексов с проведением некоторой модернизации и усовершенствования.
     Однако не следует сбрасывать со счетов, что все ракеты-носители ранних разработок, то есть шестидесятых годов, проектировались на базе боевых ракетных систем. Боевые баллистические ракеты создавались с расчетом на обеспечение определенных характеристик, связанных с концепцией дуэльной ситуации. В этой связи на принципы проектирования накладывалась своя специфика. Надежность, стоимость, эффективность выступали в своем упрощенном виде.
     В настоящее время следует четко представлять, что мы находимся в новой эпохе разработок, где действует более основательный принцип создания систем, обеспечивающих транспортный поток Земля-космос-Земля. Критерии надежности, стоимости и эффективности теперь представляются в совокупности обеспечения безопасности полетов в новом, совершенном виде. За это приходится платить.
     Поэтому, кроме прямых методов должной отработки двигателей и повышения качества изготовления, достигается необходимый уровень надежности при использовании средств и методов диагностики.
     Системы наземной диагностики двигателей обеспечивают оценку их технического состояния, выбраковку или ремонт потенциально ненадежных экземпляров. Эффективность работы системы можно было бы проиллюстрировать следующим примером. При эксплуатации ракеты-носителя с восемью двигателями, имеющими вероятность безотказной работы 0,95, произошло бы 40 отказов, использование наземной технической диагностики с коэффициентом охвата возможных аварийных ситуаций порядка 0,9 позволяет выявить 9 дефектных двигателей из 10, что эквивалентно повышению надежности единичного двигателя на порядок.
     Поэтому, если бы можно было разработать систему диагностики с эффективностью 0,99, то создание многодвигательных ракет-носителей стало бы вполне экономически выгодным даже при надежности единичных двигателей 0,995. Однако, как показывает опыт разработки подобных систем для воздушно-реактивных двигателей, конструкторы вынуждены ориентироваться на значения уровня эффективности подобных систем меньшие, чем 0,9.
     Структура, состав, методы, применяемые в системе диагностики, для каждого двигателя по своей функции едины и различаются из-за специфики каждой конструкции.
     Эти системы достаточно подробно показаны в разделах по двигателям РД-170 и РД-0120.
     Особое значение в обеспечении достаточного уровня надежности связки двигателей имеет система включения резерва. В сущности на начало разработки ракеты "Энергия" достаточного опыта у создателей двигателей не было. Эта система с начала разработки получила наименование системы аварийной защиты.
     Система аварийной защиты - это совокупность мероприятий, предусматриваемых в конструкции двигателя, и средств контроля, обеспечивающих живучесть двигателя, предупреждающих аварийно опасное развитие отказов двигателя. Под живучестью двигателя понимается его невосприимчивость к неисправностям и отказам отдельных элементов и агрегатов, либо изменение режима или отказ двигателя без аварийно-опасных последствий для смежных систем ракеты.
     Выбран показатель, характеризующий живучесть двигателя с учетом системы аварийной защиты, - вероятность безотказной работы жидкостного ракетного двигателя. Разработана методика оценки этого показателя.
     Надежность системы аварийной защиты должна быть не ниже надежности двигателя. При этом следует иметь в виду, что понятие достоверности обнаружения развивающихся отказов или, другими словами, ложного срабатывания системы входит в оценку качества системы под понятием "надежность системы".
     Анализ отказов жидкостных ракетных двигателей показывает, что часть из них (до 50 % вызываемая скрытыми дефектами изготовления, усталостью, ползучестью и охрупчиванием материала, не обнаруживается существующими методами контроля на стадии их скрытого развития, а завершающая стадия подобного отказа, от момента, когда он появляется, и до разрушения двигателя, длится всего десятые и даже сотые доли секунды. Это обстоятельство не позволяет с помощью средств наземной диагностики надежно прогнозировать развитие подобных видов отказов и выбраковывать перед полетом потенциально опасные двигатели. Очевидно, что подобная задача может быть решена лишь с помощью систем контроля двигателей, работающих в реальном масштабе времени, - бортовых систем. Поэтому целесообразно использовать обе системы: систему для диагностики технического состояния двигателей и выбраковки потенциально ненадежных экземпляров по результатам анализа данных, полученных как при работе, так и при всех видах межполетных испытаний, и бортовую систему аварийной защиты для своевременного выключения двигателей, скрытые дефекты которых не были выявлены системой наземной диагностики. В этом случае даже при умеренной эффективности обеих систем (порядка 0,9) вероятность отказов двигателей при полетах может быть снижена на два порядка.
     При разработке и использовании этих систем необходимо учитывать, что они не взаимозаменяемы и предъявляют различные требования к особенностям конструкции ракет-носителей. Наземная диагностика не предъявляет каких-либо специфических требований к конструкции носителей и обеспечивает существенное увеличение надежности двигательных установок без заметных потерь полезной нагрузки. Но, с другой стороны, наземная диагностика не гарантирует выявления почти половины возможных скрытых дефектов изготовления двигателей.
     Бортовая система аварийной защиты, работающая в реальном масштабе времени, теоретически может парировать любые виды отказов двигателей, обеспечивая их своевременное выключение, без взрывов и внешних разрушений. В этом случае, при постоянно включенных резервные двигателях носителя, вероятность отказа двигательной установки-связки может (при заданной надежности единичных двигателей и прочих равных условиях) уменьшиться на один-два порядка, в зависимости от числа резервных двигателей.
     В целях выполнения требований по обеспечению высокой надежности функционирования ракеты-носителя (до 0,99) и безопасности (до 0,995) при выведении орбитального корабля в составе ракеты-носителя предусмотрено горячее резервирование маршевых двигателей первой и второй ступеней. Существует область параметров, в которой надежность связки двигателей не ниже надежности единичного двигателя при наличии оптимального уровня резервирования и достаточно надежной системы включения резерва. Влияние степени резервирования имеет характер насыщения, которое после определенного значения практически не дает существенного увеличения. Степень резервирования, а следовательно, определенная избыточность по тяге, имеет конструктивно-компоновочные ограничения в реальной схеме ракеты. Не представляет больших конструктивных сложностей организация компоновки с резервированием в моноблочных схемах ракет-носителей, и достаточно многодельная компоновка получается в пакетной структуре. Дело в том, что пакетная структура требует обеспечения возможности перелива компонентов из блока в блок при возникновении ситуации с выключением аварийного или предаварийного двигателя и расходом оставшегося компонента в форсированном режиме через остальные двигатели.
     При разработке конструктивная схема с закольцовкой баков первой ступени всех четырех блоков на ракете "Энергия" по результатам исследований не была принята из-за ряда проблем, связанных с динамикой системы в целом, большой подвижностью элементов конструкции, чрезмерной усложненностью пневмогидравлической схемы питания компонентами и, как следствие, падением надежности системы.
     Использование резервных двигателей возможно только при условии своевременного выключения аварийных двигателей до внешнего разрушения.
     Проблема своевременного определения аварийной ситуации состоит в том, что параметры рабочих процессов, как правило, не выходят за пределы, предусмотренные проектом на двигатель, а в некоторых случаях двигатель не реагирует на дефект вплоть до его физического отказа. Ситуация еще более осложнена дефицитом времени в связи с быстрым развитием аварийных процессов. Вот почему должна быть обеспечена высокая надежность работы системы, предупреждающей о возникновении аварийного процесса. Вероятность невыдачи ложного сигнала этой системы должна быть не ниже 0,9995 при доверительной вероятности 0,9.
     Результаты статистического анализа показали, что при работающем двигателе все отказы разделяются на три группы по времени развития неисправности от момента, когда по параметрам рабочих процессов элементов двигателя можно определить наличие неисправности, до момента разрушения двигателя или других последствий, выводящих двигательную установку из работоспособного состояния.
     К первой группе относятся отказы, для которых время развития неисправности, определяемое по параметрам рабочих процессов, меньше времени, необходимого для осуществления каких-либо защитных операций. Минимальное время проведения защитных операций оценивалось суммой времени на срабатывание аппаратуры и закрытие клапанов. К первой группе в основном относятся отказы турбонасосного агрегата ракетного двигателя. Доля этих отказов составляет порядка тридцати %. Алгоритмы, основанные на анализе рабочих процессов, непригодны для контроля таких отказов, так как они обнаруживаются в последней стадии своего развития. При этом происходит взрыв или быстрое горение элементов конструкции. Характерное время развития отказа после возгорания даже меньше, чем время закрытия пироклапанов. Поэтому для предотвращения аварийных последствий отказов такого типа оказалось необходимым создание алгоритмов, основанных на использовании информации о состоянии конструктивных элементов.
     Ко второй группе относятся отказы, время развития которых, определяемое по параметрам рабочих процессов в элементах двигательной установки, составляет 0,04-0,05 с. К этой группе относятся, в основном, отказы, приводящие к срыву насоса окислителя двигателя, вызываемые наличием газовых включений на входе в насос. Отказы второй группы могут быть локализованы по алгоритмам, использующим информацию о параметрах рабочих процессов - давления, температуры. Однако и в этом случае требуется минимальное время для срабатывания следящей аппаратуры и закрытия клапанов.
     К третьей группе относятся отказы, характерные времена которых составляют несколько десятков долей с и более. Эти отказы успешно локализуются при помощи алгоритмов, использующих информацию о параметрах рабочего процесса. Характерными отказами этой группы являются негерметичность полостей компонентов топлива и газа, которые могут привести к потере компонентов рабочих тел и к полному отказу.
     Степень охвата аварийных ситуаций измеряется коэффициентом охвата, значение которого коррелированно с уровнем надежности системы защиты. В самом деле, чем больше регистрирующих каналов и регистрирующих элементов, тем сложнее алгоритмы ее функционирования, тем она эффективнее, имея в виду значение коэффициента охвата, но тем менее она надежна из-за сложной структуры, и наоборот.
     Установить количественную связь между параметрами надежности и коэффициентом охвата аварийных ситуаций системы возможно только при должном накоплении статистических данных.
     Система аварийной защиты, обладая свойствами предупреждения отказов и возникновения аварийной ситуации с широким диапазоном их охвата и высокой достоверностью, может решать более сложную задачу в полете, такую, как перевод подозреваемого двигателя на щадящий режим, а не только его выключение.
     Такая система интересна тем, что в условиях жестких ограничений по тяговооруженности носителя, а также отсутствия перелива компонентов топлива в пакетной схеме, дает возможность расширить диапазон выходов из аварийных ситуаций. Перевод на щадящий режим возможен при определенных, предусмотренных в проекте, решениях даже на ракетах с однодвигательной маршевой установкой. Применима она также к пакетным схемам ракет с автономными блоками с некоторыми условиями, связанными с возможностью перевода "заболевших" двигателей на щадящий режим или исправных - на форсированный. Потеря тяги за счет дефектного двигателя в моноблочной структуре компенсируется форсированием других двигателей в пределах запасов по тяговооруженности. В пакетной схеме без перелива компонентов - аналогично, но только по необходимости, исходя из условий сохранения управляемости, с организацией дополнительного расхода топлива из баков двигателя, работающего на щадящем режиме, может быть даже в варианте простого слива.
     Схема с щадящим режимом работы дефектного двигателя повышает надежность связки в меньшей мере, чем схемы с чистым резервированием, если их рассматривать раздельно, примерно вдвое. Естественно, реальное приложение этой схемы эффективно в комплексе с резервированием.
     Увеличение ресурса двигательной установки за счет использования дефектного двигателя дает возможность при запроектированном резерве по тяге выполнить носителем целевую задачу. При ограничении по энерговооруженности и в однодвигательной схеме без запасов по тяге система расширяет возможности по организации условий спасения экипажа, а в беспилотных полетах - увода аварийной ракеты от стартового сооружения.
     Однако реальный коэффициент охвата аварийных ситуаций, фиксируемых системой аварийной защитой, редко превышает 0,9.
     Создание эффективной системы впервые в нашей стране осуществлялось при разработке двигательных установок ракеты "Энергия". При этом были выбраны диагностические параметры, при контроле которых обеспечивается своевременное выключение неисправного двигателя; созданы алгоритмы работы системы аварийной защиты, обеспечившие эффективные меры по локализации неисправностей, а также высокую вероятность отсутствия ошибочного выключения двигателей; создана датчиковая аппаратура системы аварийной защиты, обеспечивающая необходимое быстродействие и точность контроля и обладающая необходимой надежностью; создан комплекс аппаратуры системы аварийной защиты, обеспечивающий реализацию алгоритмов контроля диагностических параметров и связь с системой управления ракеты-носителя; разработаны методы резервирования элементов системы аварийной защиты - датчиков, аппаратуры, диагностических параметров в алгоритмах, обеспечивающих необходимые характеристики надежности системы аварийной защиты в целом; разработаны методики оценки эффективности системы аварийной защиты.
     Решение основной задачи системы аварийной защиты - выключение аварийного двигателя до его внешнего разрушения - осуществляется на основе измерения параметров, характеризующих суть рабочих процессов, протекающих в двигателе, и его состояние.
     Проведен анализ жидкостного ракетного двигателя как объекта системы аварийной защиты. Определены виды отказов, требующие своевременного прекращения работы двигателя. Оценена эффективность систем, выполняющих функции, аналогичные системе аварийной защиты, в двигателях предшествующих разработок. Определено время выключения системы аварийной защиты и точность работы аппаратуры. При решении этих задач были использованы материалы аварийных испытаний двигателей.
     С учетом полученных данных была создана программа разработки алгоритмов, включающая в себя выбор измеряемых параметров, наиболее полно отражающих техническое состояние двигателей, выбор диагностических параметров, наиболее чувствительных к развивающимся аварийным ситуациям, определение временных интервалов контроля и предельно допустимых значений по каждому диагностическому параметру. Алгоритмы контроля разработаны с учетом ограничений на точность, быстродействие и надежность контролируемой аппаратуры. При этом был произведен выбор типа, количества и точности датчиковой аппаратуры.
     Критерием правильности выбора алгоритмов является выполнение требований к показателям надежности и эффективности системы аварийной защиты, заданных в техническом задании на двигатель.
     Решение об аварийном выключении двигателей принимается по любому алгоритму контроля. Выбор контролируемых параметров произведен на основе анализа причинно-следственных схем развития отказов. В основу схем в первую очередь положены данные о дефектах и неисправностях, имевших место в процессе стендовых испытаний и эксплуатации данного типа двигателя или его прототипа, а также результаты анализа пневмо-гидросхем двигателей.
     Была создана методика преобразования измеряемых параметров в диагностические. При этом требование достаточности изменения диагностических параметров в аварийных ситуациях, с точки зрения возможности измерения, является основным, определяющим необходимость и пригодность как используемой вычислительной операции, так и выбранного параметра контроля.
     Разработаны основные методические положения по расчету предельных уровней параметров системы аварийной защиты двигателей, с учетом которых созданы методики настройки системы аварийной защиты конкретных жидкостных ракетных двигателей. При определении предельных уровней параметров системы аварийной защиты основным является метод оценки статистических характеристик распределений параметров.
     Задача выбора диагностических параметров решалась путем сопоставления отклонений параметров в аварийной ситуации с предельно допустимыми значениями этих параметров. Были выявлены случаи, когда аварийный сигнал неразличим на фоне маскирующих его помех. Для конкретизации вычислительных операций преобразования сигнала с датчика, с целью увеличения точности оценки полезного сигнала до требуемого значения, проведен анализ погрешностей, определены виды компенсации.
     Аддитивные погрешности устраняются путем вычислений приращений параметров и соотношений параметров. Погрешности, имеющие колебательный характер, компенсируются путем усреднения сигналов.
     Наличие в жидкостных ракетных двигателях нескольких режимов работы - запуска, когда параметры изменяются с большой скоростью, и установившегося режима, когда параметры постоянны и должны соответствовать расчетным, - предопределяет необходимость для каждого из режимов иметь свой состав алгоритмов. Задача снятия одних алгоритмов и включения в контроль других решена двумя способами: жестким заданием времени переключения алгоритмов и формированием логики переключения алгоритмов, используя отличия в поведении параметров на этих режимах, что позволило организовать более тонкую структуру контроля. Впервые наряду с контролем параметров рабочих процессов использован контроль параметров, определяющих техническое состояние двигателей, - осевого положения ротора турбонасосного агрегата. Такой параметр оказался наиболее чувствительным к всевозможным дефектам турбонасосного агрегата. Предельно допустимое значение диагностического параметра было определено, исходя из предельных упругих деформаций опорного подшипника турбонасосного агрегата.
     С учетом вышеизложенного разработаны алгоритмы системы аварийной защиты двигателей. Специально для этой системы разработаны функциональные датчики, имеющие по два независимых выхода, что обеспечивает необходимое резервирование контрольных каналов и дает возможность обеспечивать телеметрические измерения. Датчики малоинерционны и обладают повышенной механической надежностью.
     Создан быстродействующий комплекс аппаратуры системы аварийной защиты. Комплекс осуществляет сбор и предварительную обработку информации, поступающей с датчиков, приводит сигналы, соответствующие всем контролируемым параметрам, к пригодному для организации порогового контроля виду, формирует команды управления на автоматику двигателя при превышении контролируемыми параметрами их предельных значений; другими словами, комплекс является основным логическим звеном системы аварийной защиты. Аппаратура системы аварийной защиты обеспечивает автоматический предпусковой контроль всех элементов системы, производит также формирование телеметрической информации, необходимой для анализа функционирования системы аварийной защиты.
     Включение каналов контроля в работу, а также выбор предельных значений всех контролируемых параметров на отдельных участках контроля работы двигателя осуществляется по команде от комплекса автономного управления.
     Комплекс аппаратуры системы аварийной защиты представляет собой гибридное управляющее вычислительное устройство, в котором применена как дискретная, цифровая, так и аналоговая обработка информации, что позволяет сочетать высокое быстродействие с большими логическими и вычислительными возможностями. Комплекс аппаратуры позволяет для части контролируемых параметров задавать индивидуальную настройку для каждого двигателя.
     При создании системы аварийной защиты двигателя РД-0120 был выбран состав контролируемых параметров, алгоритмы контроля, разработаны требования к датчикам, аппаратуре, ее взаимодействию с системой управления.
     Алгоритмически система построена по следующим основным принципам:
     - учет параметров и характеристик всех этапов запуска, режима и выключения двигателя, в том числе предогневых процессов;
     - задание величин предельных уровней параметров в зависимости от режима работы;
     - использование в качестве диагностических признаков абсолютных величин и приращений параметров;
     - возможность поднастройки предельных уровней параметров с учетом особенностей конкретного экземпляра двигателя.
     Разработка и отработка системы проведена в следующие этапы.
     На первом этапе были обобщены неисправности и отказы ранее разработанных двигателей и на этой базе выбраны параметры контроля двигателя - давление, температура, вибрация, пульсация, сформулированы алгоритмы их преобразования и логической обработки, которые послужили основой объектовой системы. По этим алгоритмам были спроектированы и разработаны стендовые аппаратурные модули. Отрабатывались различные варианты датчиков, их надежность, метрологические характеристики. Уже на этом этапе система показала высокую эффективность при многочисленных незапусках запальных устройств, обеспечив сохранность двигателя. При разрушении агрегатов подачи защита, как правило, не обеспечивала сохранности двигателя, но позволяла выключить его с минимальными разрушениями стенда.
     На втором этапе был проведен структурно-функциональный анализ конструкции агрегатов двигателя РД-0120 и результатов их доводочных испытаний, обобщенный в виде перечня аварийных ситуаций и способов выхода из них. Были проанализированы результаты отработки алгоритмов по первому этапу на стендовой аппаратуре и на основании этого анализа определены изменения в логике функционирования системы, направленные на сокращение числа контролируемых параметров при соответствующей компенсации за счет усложнения алгоритмов и увеличения их гибкости. При этом был исключен недостаточно эффективный контроль параметров давления и разработана новая версия алгоритмов контроля, включающая следующие параметры: обороты турбины, бустера горючего, температура в газогенераторе, перепады давлений в разделительной полости турбонасосного агрегата и осевое перемещение ротора. Все это позволило повысить эффективность системы при одновременном ее упрощении. Что касается отработки системы в целом, то на этом этапе были решены вопросы привязки штатной аппаратуры к стенду.
     На третьем этапе были отработаны характеристики системы на базе объектовой аппаратуры. На этом этапе разработана и отработана технология настройки защиты и системы мониторинга программно-методического обеспечения, а также подтверждены заданные показатели работоспособности и эффективности алгоритмов.
     Примером высокой эффективности системы может служить аварийное выключение двигателя из-за незапуска бустера горючего при огневых стендовых испытаниях блока Ц, которое дало возможность избежать серьезной аварии на стенде, провести ремонт двигателя и успешно повторить испытание. За период доводки почти 90 аварий двигателей было предотвращено благодаря использованию системы защиты, что дало значительную экономию времени и средств.
     Система аварийной защиты двигателя РД-170 и ее стендовый аналог - система выключения двигателя - в ходе отработки сыграли важную роль как средства предотвращения больших разрушений самого двигателя и стенда. Кроме того, эти системы расширили возможности анализа причин аварий при сохранении конструкций двигателей. Состав средств систем включил как традиционные измерения давлений, температур, оборотов и (на отдельных испытаниях) пульсации, так и новые - осевых и радиальных перемещений вала и осевых сил.
     Для обеспечения высокой надежности функционирования и уменьшения вероятности выдачи ложного сигнала используется контроль по ограниченному числу параметров, имеющих интегральный характер, применительно к техническому состоянию систем двигателя с помощью алгоритмов, заключающихся в слежении за моментом выхода параметра за предельно допустимые значения.
     Обороты турбонасосного агрегата контролируются по верхнему и нижнему пределам: в случае выхода параметров за пределы система выдает команду на аварийное выключение двигателя. Контроль по верхнему предельному значению преследует цель фиксации состояния, связанного с разрушением материальной части, по нижнему пределу - нормального хода запуска двигателя и своевременной фиксации спада режима при отказе какой-либо системы.
     Контроль температуры газа за турбиной проводится только по верхнему предельному значению. Параметр более чувствителен к ситуациям, связанным с ростом температуры среды, приводящему к возгоранию в окислительном тракте.
     Использование сплавов на основе никеля практически решает проблему защиты от возгорании в жидкостных окислительных трактах. Однако подшипники турбонасосного агрегата, в том числе и кислородного, изготавливаются из стали. В этих условиях чрезмерные осевые нагрузки на упорный подшипник могут вызвать его повреждения с последующим возгоранием и разрушением агрегата. С целью упреждения аварии предусмотрен контроль осевого положения.
     На отдельных этапах рассматривался ряд других параметров типа вибрации и углов поворота приводов регулирующих органов. Вырабатывались алгоритмы контроля как по текущему уровню параметров, так и по величине их производных по времени. Рассматривались варианты адаптивного контроля.
     Уже на начальной стадии отработки стало очевидным, что задача обеспечения высокой эффективности этой следящей системы является трудной. Имели место как ложные срабатывания, так и многочисленные случаи, когда срабатывание системы выключения двигателя на стенде не предотвращало разрушений двигателя и повреждений стенда. За первые два года испытаний при 72 пусках было 34 отказа: система сработала 32 раза, из которых 3 - ложных. Из 29 выключений двигатели были сохранены в 10 случаях. Более поздняя оценка (уже за период функционирования на стенде штатной системы аварийной защиты с 1984 по 1989 г.) показала, что из 28 случаев срабатывания системы только в 6 случаях двигатели были сохранены.
     Эти оценки объясняются, в основном, имевшими место при отработке быстроразвивающимися (за 0,05-0,08 с) авариями при возгораниях турбины, насоса окислителя и других агрегатов. Отказы с возгораниями составили около 70, а по статистике всех испытаний двигателей к 1990 г. - 32 %.
     По оценке эффективности системы аварийной защиты двигателя РД-170 при значении надежности двигателя 0,9989 показатель безаварийности получен 0,9992 при доверии 0,9. Величина прироста 0,0003 - невысокая, но если оценивать эту величину с точки зрения возникновения аварии, ее вероятность снижается почти в четыре раза.
     Существующие средства управления, диагностирования и аварийной защиты не позволяют предотвращать все типы возникающих в процессе работы двигателя аварийных ситуаций, особенно первой группы. В частности, остаются не охваченными разгары турбины и газового тракта на запуске, а также возникающие во время длительной работы трещины в роторе турбины, которые являются основным источником аварийных ситуаций.
     Проводятся исследования применения индукционного вихретокового метода контроля возникновения трещин в лопатках турбины работающего двигателя, а также метода контроля сигналов акустической эмиссии работающего двигателя для предотвращения указанных типов аварийных ситуаций.
     Особая актуальность этих исследований связана с повышением ресурса и многократности использования двигательных установок.
     Появилась возможность использования канала контроля возгорании в окислительных трактах в составе стендовой и бортовой системы защиты. Контроль осуществляется электростатическими методами с помощью индикаторов возгорания (на ранней стадии их развития). Измеряется разность электрического потенциала между двумя электро-изолированными от корпуса зондами, введенными в поток. На самой начальной стадии возгорания фиксируется резкое возрастание сигнала.
     Велась разработка системы диагностического контроля и защиты на основе замера плотности спектра частот при реальной работе. Эта система дает возможность, особенно при многократных применениях двигателя, получить информацию о разбалансе динамической системы двигателя.
     Исследованиями показано, что путь повышения охвата возможных аварийных ситуаций системой аварийной защиты и диагностики является наиболее важным и относительно экономичным. Достижение коэффициента охвата значения 0,9 и выше предопределяет уверенность в разработке многодвигательных ракетно-космических транспортных систем.


Далее...